Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(7): 2826-2834, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34738637

RESUMO

BACKGROUND: Environmental concerns and the diminishing availability of unrenewable resources have spurred research into the use of agricultural waste as a feedstock for industrial applications. Efficient conversion of wheat straw into biobased chemicals is an important way to realize the potential value of renewable agricultural biomass. This study investigated one-pot conversion of wheat straw into two notable platform chemicals, levulinic acid (LA) and methyl levulinate (ML). RESULTS: A mixed acid catalyst system, including 1% H2 SO4 and 0.015 mol L-1 Al2 (SO4 )3 , was an efficient catalyst for the conversion of wheat straw due to the combination of Brønsted acid and Lewis acid. A ratio of wheat straw to methanol of 5 g/50 mL was identified as the preferred solid/liquid ratio, and a methanol/H2 O medium with 25% water content aided the simultaneous production of LA and ML from wheat straw. Under optimum conditions, the maximum total yield of LA and ML reached 23.01% at 220 °C and 3 h. The kinetics of biobased chemical formation and the reaction pathways in methanol/water were investigated. CONCLUSION: The presence of water in the methanol/H2 O medium affected the distribution of products and promoted hydrolysis reactions. The methanol/H2 O medium not only inhibited the side reactions but also promoted the degradation of wheat straw and increased the total yield of LA and ML. This study provides a feasible method for the conversion of wheat straw to prepare biobased chemicals. © 2021 Society of Chemical Industry.


Assuntos
Metanol , Triticum , Ácidos/metabolismo , Hidrólise , Triticum/química , Água/metabolismo
2.
Bioresour Technol ; 344(Pt A): 126220, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715343

RESUMO

Hydrogen-nanobubble water was proposed to enhance methane production by anaerobic digestion (AD) with corn straw. The effects of H2-nanobubble water (H2-NBW) amounts (0%, 20%, 40%, 60%, 80%, and 100%) on methane production characteristics of corn straw were explored. The results showed that the methane yields were increased by 11.54%∼25.29% compared with the control group(CK), and the maximum cumulative methane production reached to 254.36 mL·g-VS-1 when the H2-NBW addition was of 60%. Interestingly, the maximum methane concentration increased by 4.37% compared with CK. H2-NBW addition can destroy the cellulose structure of corn straw, reduce the crystallinity of cellulose, and promote the hydrolysis. The degradation rate of cellulose and hemicellulose were increased by 20%∼33% and 13% ∼25.7% respectively, and the removal rate of TS and VS were increased by 6.82%-27.93% and 8.52%-21.47%, respectively. The modified Gompertz equation fitted the cumulative methane production curves very well, with high correlation coefficients (R2 > 0.992).


Assuntos
Hidrogênio , Zea mays , Anaerobiose , Biocombustíveis , Metano , Água
3.
Phys Chem Chem Phys ; 23(35): 19729-19739, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524307

RESUMO

The fundamental understanding of glucose conversion to 5-ethoxymethylfurfural (EMF) and ethyl levulinate (EL) (value-added chemicals from biomass) in ethanol solution catalyzed by a Brønsted acid is limited at present. Consequently, here, the reaction pathways and mechanism of glucose conversion to EMF and EL catalyzed by a Brønsted acid were studied, using an experimental method and quantum chemical calculations at the B3LYP/6-31G(D) and B2PLYPD3/Def2TZVP level under a polarized continuum model (PCM-SMD). By further verification through GC/MS tests, the mechanism and reaction pathways of glucose conversion in ethanol solution catalyzed by a Brønsted acid were revealed, showing that glucose is catalyzed by proton and ethanol, and ethanol plays a bridging role in the process of proton transfer. There are three main reaction pathways: through glucose and ethyl glucoside (G/EG), through fructose, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), and EL (G/F/H/L/EL), and through fructose, HMF, EMF, and EL (G/F/H/E/EL). The G/F/H/E/EL pathway with an energy barrier of 20.8 kcal mol-1 is considered as the thermodynamic and kinetics primary way, in which the reaction rate of this is highly related to the proton transfer in the isomerization of glucose to fructose. The intermediate HMF was formed from O5 via a ring-opening reaction and by the dehydration of fructose, and was further converted to the main product of EMF by etherification or by LA through hydrolysis. EMF and LA are both unstable, and can partially be transformed to EL. This study is beneficial for the insights aiding the understanding of the process and products controlling biomass conversion in ethanol solution.


Assuntos
Etanol/química , Furaldeído/análogos & derivados , Glucose/química , Modelos Moleculares , Ácidos Sulfúricos/química , Biocombustíveis , Catálise , Teoria da Densidade Funcional , Furaldeído/química , Ácidos Levulínicos/química , Termodinâmica
4.
Bioresour Technol ; 121: 93-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22858471

RESUMO

The production of ethyl levulinate from wheat straw by direct conversion in ethanol media was investigated. Response surface methodology (RSM) was applied to optimize the effects of processing parameters, and the regression analysis was performed on the data obtained. A close agreement between the experimental results and the model predictions was achieved. The optimal conditions for ethyl levulinate production from wheat straw were acid concentration 2.5%, reaction temperature 183°C, mass ratio of liquid to solid 19.8 and reaction time 36 min. Under the optimum conditions, the yield of ethyl levulinate 17.91% was obtained, representing a theoretical yield of 51.0%. The results suggest that wheat straw can be used as potential raw materials for the production of ethyl levulinate by direct conversion in ethanol media.


Assuntos
Biotecnologia/métodos , Celulose/química , Etanol/química , Ácidos Levulínicos/síntese química , Componentes Aéreos da Planta/química , Triticum/química , Análise de Regressão , Temperatura , Fatores de Tempo
5.
Bioresour Technol ; 121: 335-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22858504

RESUMO

The severity factor is a common term used in steam explosion (SE) pretreatment that describes the combined effects of the temperature and duration of the pretreatment. However, it ignores the duration of the explosion process. This paper describes a new parameter, the explosion power density (EPD), which is independent of the severity factor. Furthermore, we present the adoption of a 5m(3) SE model for a catapult explosion mode, which completes the explosion within 0.0875 s. The explosion duration ratio of this model to a conventional model of the same volume is 1:123. The comparison between the two modes revealed a qualitative change by explosion speed, demonstrating that this real explosion satisfied the two requirements of consistency, and suggested a guiding mechanism for the design of SE devices.


Assuntos
Biocombustíveis , Biomassa , Biotecnologia/métodos , Modelos Químicos , Vapor , Hidrólise , Microscopia Eletrônica de Varredura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...